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Introduction 
A significant portion of our research team effort is to improve our understanding of 
reservoir production mechanisms, and to explore alternative strategies for improving 
performance and cost effectiveness. In achieving this goal it is of primary importance 
for us to have at our disposal a very flexible simulator that, directly, easily and in a very 
short time, can be corrected, modified or widened to analyze different “constitutive” 
models or to change the level of their detail. By this way we gain two significant 
advantages. First, we verify, shortly and explicitly, the implications of the assumptions 
used in our chemical-physical models; then, all the researchers of our team can use the 
simulator as a communications tool where all assumptions will be explicit and the 
results will be consistent with all team assumptions.  
For the last twenty years several researchers have been working on the development of 
reservoir simulators. Nowadays many commercial reservoir simulators are routinely 
used to predict the performance of a reservoir and to explore methods for increasing the 
oil and gas recovery. Particular attention is devoted to modelling enhanced oil recovery 
(EOR), by thermal, chemical or solvent methods. Most of these packages are very 
efficient and flexible, but they are in general black-box reservoir simulators; just a few 
of them are open-source. 
This work is a detailed description of the upgrading of our equation oriented chemical 
process simulator CheOpe to model gas and oil production.  
Pioneering research being conducted by our system engineering group since 1985 has 
provided a scientific and engineering basis for modelling chemical process operations. 
This research has resulted in the development and application of CheOpe (Pagani and 
d'Arminio Monforte 1985; Pagani et al. 1989, 1996, 2001), an Equation-Oriented (E.O.) 
simulator based on an interconnected cells approach. CheOpe is a multicomponent, 
multiphase, simulator which accounts for complex phase behaviour, chemical and 
physical transformations, TDN equilibrium and mass-transfer models. It solves the main 
stationary process analysis problems (simulation, design, optimization and so on) by 
using a lumped sub-unit called "cell": each process unit is described by a suitable cells 
configuration. 
CheOpe generates an equation block for each cell. All the equations blocks are then 
collected in a large sparse system solved with high numerical accuracy by advanced 
Newton-Raphson methods. 
Thanks to its architecture and its numerical algorithms, CheOpe was a promising 
starting point for a porous media flow simulator development. The purpose of this work 
is a description of the assumptions we have introduced and of the main activities we 



 

have performed to build a simulator called “CheOpe_Oil” starting from CheOpe. We 
are programming a large test plan at laboratory and near-well scales to analyse both 
convergence properties and model feasibility; in a next paper we’ll report detailed 
results of these analysis. 
 
Model structure 
The goal of our work is to develop CheOpe_Oil, a chemical flooding simulator that can 
simulate, efficiently and accurately, oil reservoirs at both the laboratory and field scales.   
CheOpe_Oil will support isothermal and non-isothermal model, one- two or three 
dimensional cartesian or radial geometry, multiple phases containing multiple species 
plus an immobile solid rock phase with adsorbing components. Phase chemical-physical 
properties (densities, viscosities, fugacity, interface and surface tension, internal energy, 
etc.) may be arbitrary functions of pressure, temperature and composition. Porosity and 
permeability may vary with location. An arbitrary number of wells may be completed at 
arbitrary locations. 
The use of any commercial mathematical, chemical, physical library is prohibited.  
Mass conservation equation for a component i can be formulated in a representative 
elementary volume (REV). V is a volume that is large with respect to the pore 
dimensions, but small compared to the dimensions of the permeable medium (Bear 
1972, Gray 1975). In V each fluid phase is considered  homogeneous and embedded 
within the permeable medium. 
Generally V is dealt as an infinitesimal, by supposing that all properties are continuous 
and derivable functions of V. Chosen a suitable number of points (“grid”), space 
derivatives are replaced by difference approximations on this point. The resulting 
nonlinear difference equations are solved by either fully implicit or semi-implicit 
techniques. Grid block has to be chosen to satisfy both numerical stability and internal 
physical detail.  
We prefer to use lumped equations directly, without converting them into partial 
differential equations and choosing the grid on the basis of  geometrical and structural 
details that are effectively known.  
This approach offers two main advantages: the model consists of a DAE system with 
ordinary differential equations in which the independent variable is time; grid block can 
be chosen on the basis of internal physical detail with a regular or irregular 
discretizations.  
Gear’s method (Gear, 1984) or another predictor-corrector method where predictor is 
based on Crank-Nicolson’s approach are used to solve the system at each grid block and 
time step. 
 
Main simulator changes to deal with oil recovery processes 
The main problems for enabling  CheOpe to simulate oil recovery processes depend on 
the following basic conceptual differences between a steady-state chemical process and 
an oil recovery process : 

a. Chemical process simulation just depends on plant topology; oil recovery 
process simulation depends on its topography too. 

b. Flow-driven simulation is generally suitable for a steady-state chemical 
process analysis; on the contrary oil recovery process simulation requires a 
more rigorous pressure-driven simulation. 

c. Both processes can be represented by a digraph (directed graph) describing 
information flow structure; but each flow direction is not univocally defined in 
a reservoir problem. 



 

d. Steady-state models have an algebraic structure, not suitable for a dynamic 
process like oil recovery whose models have an algebraic-differential structure.  

e. Graphical user interfaces for enabling user to deal with the two problems are 
quite different.   

f. Graph describing a reservoir structure is very larger and more complex.  
a. In mass conservation equation superficial velocity, and then mass flow, can be 
expressed by a finite form of Darcy’s law for flow in permeable media, where some 
terms depend on the graph topography (relative position among grid cells). 
b., c. A chemical process is generally analyzed in the form of graph. In particular, a 
flow-driven model can be easily represented by a directed graph where edges direction 
is the same of known material and/or energy flow direction. A pressure-driven model 
too can be represented by a directed graph, but information flows don’t correspond 
exactly to physical flows.  
In both cases, for a chemical process model, the original structure matrix is invariant 
during the solution procedure. On the contrary, a reservoir model is a conditional (Rico-
Raimarez and Westerberg, 2002) pressure-driven model; i.e. model equations and 
variables are not correlated by an invariant structure matrix. In fact, variables 
occurrence in partial mass and energy balance equations is changing, depending on the 
local pressure values. 
d. By our approach, a reservoir model consists of a DAE system with ordinary 
differential equations where independent variable is time. Predictor-corrector methods 
can be used to solve the system at each time step. By collecting DAE equations in 
blocks, corresponding to the chosen space grid blocks, we can exploit CheOpe 
architecture to efficiently solve resulting sparse block-equations.  
e. The numbers and the results to be reported in a dynamic reservoir simulation are 
much larger than the stationary process simulation ones. So it is impossible to report 
them by tabulation. We use level maps and plots to display results, depending on the 
time and on the local position in the reservoir. 
f. Grid block can be chosen on the basis of internal physical detail: it may happen 
that  large reservoir areas can be discretized with a little number of large blocks. Even 
so, resulting graph dimension and complexity are not low; in particular DAE sparseness 
is dramatically reduced in comparison with a chemical process problem, especially for 
3-D problems. 
 
Model formulation 
An oil recovery process performance depends on both the reservoir and the wells 
features. To simulate the process we have to suitably link models of both systems and to 
choose significant initial and boundary conditions. Both systems are described by 
multicomponent, multiphase flow equations, where fluids move in permeable media for 
reservoir, and in pipes for wells. The equations are unsteady state mass and energy 
balances.  Compositions in each phase are evaluated assuming TDN equilibrium among 
fluid phases (oil, gas, water) and, in the reservoir, also between oil, water and adsorbed 
phase.  
Reservoir is described by a pressure driven model, where flux vector of each component 
in each phase results by the sum of a convective and a dispersive flow.  The former are 
evaluated by the Darcy’s law for multiphase flow, the latter are neglected in our model. 
The oil pressure is evaluated by an overall mass balance on rock free volume; the other 
phase pressures are computed adding capillary pressure between phases. 
Wells model is a flow driven model; the top or the bottom pressure is imposed by fixing 
the same pressure or the flow rate; pressure and phase saturation along the well are 
evaluated by some multiphase flow model in pipes.  



 

In alternative, on the boundaries we can assume no-flux through boundaries or we can 
specify pressure on them. 
Two important peculiarities strongly affect the simulator behaviour: 

•  variables occurrence in partial mass and energy balance equations is changing, 
depending on the local pressure values 

• fluid phases can appear or disappear in a reservoir with time and location.  
To solve the first problem we have connected the grid cells each other by a couple of 
convective fluxes i-j and j-i; during the simulation, one of these is cleared by 
multiplying it by a suitable function of the difference Pi – Pj. The function arctan(Pi – Pj) 
gives good results. 
The second is a very cumbersome problem (Bausa and Marquardt, 2000). In the next 
paragraph we shortly describe our approach to detect and handle phase changes.  
Main assumptions made in developing our reservoir cell model are: 

• One, two or three dimensions;  
• Temperature assigned (isothermal cell); 
• Multiphase flow of fluids through porous media described by  Darcy’s law; 
• One, two or three fluid phases and an adsorbed phase combined to represent 13 

different phase configurations; 
• Thermodynamic equilibrium among fluids and between fluids and adsorbed 

phase, with negligible capillary pressure effect on phase equilibrium;    
• Each component distributed among all phases or only in some phase; 
• Rock compressibility. 

Cells can be combined in a cartesian or radial variable-spacing grid; each cell can have 
different properties (porosity, permeability and rock compressibility), and the chemical-
physical properties (densities, viscosities, fugacity, interface and surface tension, 
internal energy, etc.) are calculated as functions of pressure, temperature and 
composition. Relative permeability and capillary pressures are calculated as functions of 
saturations and rock type. Wells can operate under specified pressure or flow rate. 

In a volume *
jV , mass conservation equations for species i and conservation equation 

are expressed as: 
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TDN equilibrium among fluid phases and, in the reservoir, between oil phase and 
adsorbed phase, are formulated as algebraic equations 

βα
jifjif ,, =  (5) 

stating equality fugacity of each component i j,if  between each phase couple α-β. 
The pressure of each non-wetting phase α is kept equal to the pressure of the wetting 
phase w increased by the capillary pressure 
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Sum equations for molar compositions and saturations complete the reservoir model.   
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Phase behavior 
In the simulation and design of chemical processes the determination whether or not a 
given phase will split into multiple phases is a difficult problem, generally called phase 
stability problem. The more fundamental approach to stability testing is to examine the 
Gibbs free energy of the system to search its lowest possible value. The problem is 
generally formulated in term of the  "tangent plane criterion" (Baker et al., 1981) 
On the other side, as the number of phases changes the corresponding process model 
becomes a conditional model (Grossmann and Türkay, 1996). So, during process model 
solution, we have to iteratively solve first a stability test and later a set of non-linear 
equations depending on the basis of the stability test itself. In particular, in an equation 
oriented approach, we have to perform two sequential or imbricate loops, introducing a 
likely instability (Widagdo and Seider, 1996). This transition between different phase 
configurations is particularly critic in dynamic processes where it is necessary to detect 
the transition events and to reinitialize the discontinuous variables. 
An alternative method, named τ-method, has been proposed to handle any phase 
configuration with the same set of equations and without a stability analysis, for both 
steady state (Han and Rangaiah, 1998) and unsteady state (Thery and al., 2004) models. 
However this method, which for steady state models requires an optimization 
formulation that restricts ulteriorly its applications, doesn’t seem to work very well for 
LL equilibria. To solve the problem we have developed a method similar to τ-method, 
that doesn’t require a solution of an optimization problem and it works both for steady 
and unsteady state models.  By this method, we assume that the sum equation of each 
guessed phase α can be written as  
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being τ a suitable constant whose value depends on computer numerical round-off. 
When phase α is thermodynamically unstable and disappears ( 0S →α ), the second 
term of equation approaches 1 and sum equation keeps its consistency, while values of 
compositional variables have no physical meaning. 
 
Solution procedure 
Our reservoir model consists of the DAE system (1), (2), (5), (6), (7), (8), where 
independent variable is time. In the original DAE system derivatives are approximated 
by finite-differences; at each time step, solution of the resulting non linear system is 



 

first estimated by an explicit predictor method and then calculated by a corrector 
method with the desired precision. Time step is reduced and solution procedure 
restarted if, by a suitable stability test (Mehra et al., 1982; Caoats, 1980, Jensen, 1980), 
difference equations are not representative of the original DAE system. Solution of the 
non linear system is achieved by a Newton-Raphson method; linear equations are 
collected in blocks, corresponding to the chosen space grid blocks, and resulting sparse 
block-equations are processed using the original CheOpe algorithms (Pagani et 
al.,1985).  
 
Test 
We tested our simulator Cheope-Oil on a variety of examples regarding both laboratory 
and literature cases. Here we shall only present one set of results, dealing with the first 
SPE Comparative Solution Project (Odeh ,1981). Although the SPE report is dealing 
with a black-oil reservoir problem, we used a compositional fluid description with a two 
components characterization, with appropriate PVT properties and relative 
permeabilities. A 10 by 10 by 3 finite difference grid was used as shown in Figure 1. 
Stratification and reservoir properties are given in Figure 2. An injection well is located 
at grid block (1,1), and one production well is located at grid block (10,10). The 
following results are here reported: 

• Gas Saturation of Production well Cell: Figure 3. 
• Oil rate production: Figure 5. 
• Maps of pressure along the reservoir at t=10 years, layer 1: Figure 6. 
• Maps of Oil saturation along the reservoir at t=10 years, layer 1: Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Reservoir grid Figure 2: Stratification and reservoir properties 
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Figure 3: Gas Saturation of Production well Cell Figure 5: Oil rate production 
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Conclusions 
Our equation oriented chemical process simulator CheOpe has been upgraded to model 
gas and oil production. By this way we have gained two main goals. First, we have 
developed a proprietary high performance porous media flow simulator in a very short 
time. Second, thank to the architecture of our new simulator, we can analyze oil and gas 
production system consisting of the reservoir and wells, alone or integrated with surface 
facilities. In a next paper we’ll report detailed results of a large test plan we are being 
carried out at laboratory and near-well scales to analyse both convergence properties 
and  model feasibility of CheOpe_Oil package. 
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Nomenclature 
A surface 

jif ,  fugacity of component i  in the 
cell j 

g gravitation acceleration 
hj,k   effective absolute 

permeability of the cell j along 
hx coordinate 

⋅rk  relative permeability  
Ncp number of components 
Nph number of phases 
Pj cell j pressure  
P  pressure  

ℜ  phase permeability  
S   saturation   

rS   residual saturation   
t time 

*jV  cell j volume 

h
x  hth coordinate 

jfi,z  molar fraction of component i 
in the jf flow, being jf a feed 
flow 

hjz ,  barycentre coordinate of the 
cell j along vertical coordinate 

 
Greek Letters 
ε  rock porosity  

hj,lΔ  distance between the barycentre of two cells 
μ  viscosity 
ρ  density  
ξ  molar fraction  
Φ  flow rate  
 
Subscripts and Superscripts 
i component i 
jin index of the cell from which is coming the flux entering the cell j 
j index of the cell  
jout index of the cell into which is coming the flux leaving the cell  
w wetting phase 
α, β phases 
 


